Synthesis and properties of some crowded organotin compounds *

Saadi M. Dhaher, Colin Eaborn, and J. David Smith

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received May 13th, 1988)

Abstract

The preparations of the compounds $(Me_3Si)_3CSnMe_2X$ (X = Cl, Br, I, CN, NCS, O_2CMe , O_2CCF_3 , O_3SMe , or NO_3), $(Me_3Si)_3CSnPh_2X$ (X = Cl or Br), and $(Me_2PhSi)_3CSnMe_2X$ (X = Me, Cl, Br, or I) are described. Treatment of $(Me_2PhSi)_3CSnMe_2Cl$ with one equivalent of MeLi gives $(Me_2PhSi)_3CSnMe_3$, but with additional MeLi $(Me_2PhSi)_3CLi$ is formed. The compound $(Me_3Si)_2C(SnMe_3)_2$ is obtained by reaction of $(Me_3Si)_2CCl_2$ with either one or two equivalents of Me_3SnLi, and on treatment with MeLi gives the useful reagent $(Me_3Si)_2(Me_3Sn)CLi$. The latter reacts with Me_2SiCl_2 and to give $(Me_3Si)_2(Me_3Sn)C(SiMe_2Cl)$ and with Me_2SiHCl to give $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$, which reacts with a one molar proportion of Br_2 to give $(Me_3Si)_2C(SnMe_2Br)$. Reaction of $(Me_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_3Si)_2C(SnMe_2Si)_2C(SnMe_3Si)_2C(SnMe_2Si)_2C(SnMe_$

Introduction

Studies of compounds in which the very bulky $(Me_3Si)_3C$ group (the 'trisyl' group, frequently denoted below by the symbol Tsi) is attached to a functional silicon centre, as in compounds of the type $TsiSiR_2X$, have revealed much novel chemistry [1,2]. In contrast, compounds with the trisyl group attached to the larger tin atom have so far shown few unusual properties [3–8].

The first such tin compound reported was $TsiSnMe_3$, obtained by treatment of TsiLi with Me_3SnCl [3]. (It was later also prepared by another, more complex, route [4].) A wide range of trisyl-tin derivatives was subsequently made by Glockling and

^{*} Dedicated to Professor E.O. Fischer on the occasion of his 70th birthday.

his co-workers, who noted that the Tsi-Sn bond is unusually inert but that cleavage of other Sn-C bonds in their compounds could be readily brought about, to give a large number of new products [6-8]. Among these were some interesting 8-hydroxyquinoline (HOX) derivatives, TsiSnR_n(OX)_{3-n} (R = Me or Ph; n = 1 or 2), and in a surprising reaction these were found to lose an Me₃Si group in refluxing ethanol [8].

We describe below the results of some further studies on trisyl-tin compounds and some related species.

Results and discussion

Reactions of TsiLi with R_2SnCl_2 (R = Me or Ph) were used to give the compounds $TsiSnR_2Cl$ (cf. ref. 5). The related lithium reagent (Me_2PhSi)₃CLi was used analogously with Me_2SnCl_2 .

 $(Me_2PhSi)_3CLi + Me_2SnCl_2 \rightarrow (Me_2PhSi)_3CSnMe_2Cl$

The chloride TsiSnMe₂Cl was found to undergo metathetical reactions with salts in refluxing acetone:

 $TsiSnMe_2Cl + MX \rightarrow TsiSnMe_2X + MCl$

(MX = LiBr, NaI, or KSCN)

The insolubility of MCl in the acetone is no doubt in some cases (e.g. in reaction with NaI) an important factor in driving the reactions to completion. Treatment of the TsiSnMe₂Cl with NaOH in H₂O/EtOH gave the oxide (TsiSnMe₂)₂O.

The related chlorides $TsiSnPh_2Cl$ and $(Me_2PhSi)_3CSnMe_2Cl$ were shown to undergo similar reactions with salts:

 $TsiSnPh_2Cl + LiBr \rightarrow TsiSnPh_2Br$

 $(Me_2PhSi)_3CSnMe_2Cl + NaX \rightarrow (Me_2PhSi)_3CSnMe_2X$

 $(\mathbf{X} = \mathbf{B}\mathbf{r} \text{ or } \mathbf{I}).$

We confirmed that $TsiSnMe_2Cl$ reacted with MeLi to give $TsiSnMe_3$ (cf. ref. 6). The related chloride $(Me_2PhSi)_3CSnMe_2Cl$ behaved analogously when a one molar proportion of MeLi was used, but with an excess of MeLi the product after work-up was $(Me_2PhSi)_3CH$, isolated in 85% yield. Presumably the excess of MeLi cleaves the C-SnMe₃ bond in the initially formed $(Me_2PhSi)_3CSnMe_3$, a reaction facilitated by the substantial stability of the $(Me_2PhSi)_3C^-$ anion (cf. that of $(Me_3Si)_3C^-$ [9]).

 $(Me_2PhSi)_3CSnMe_2Cl + MeLi \rightarrow (Me_2PhSi)_3CSnMe_3$

 \downarrow MeLi (Me₂PhSi)₃CH \leftarrow ^{MeOH} (Me₂PhSi)₃CLi + Me₄Sn

In contrast to $TsiSiMe_2Cl$, the tin chloride $TsiSnMe_2Cl$ was found to react readily with some silver salts:

$$TsiSnMe_2Cl + AgX \rightarrow TsiSnMe_2X$$

 $(X = O_2CMe, O_2CCF_3, or O_3SCF_3)$

The chloride did not react with AgCN, but the corresponding iodide did: TsiSnMe₂I + AgCN \rightarrow TsiSnMe₂CN Reaction of the iodide with $AgNO_3$ likewise gave the corresponding nitrate. The reactions of the chlorides $TsiSnMe_2Cl$, $TsiSnPh_2Cl$, and $(Me_2PhSi)_3CSnMe_2Cl$ with $AgBF_4$, apparently to give initially the corresponding tin tetrafluoroborates, and hence fluorides, have been described previously [10].

Reactions of the oxide $(TsiSnMe_2)_2O$ with mineral or organic acids HX gave, as expected, the corresponding species $TsiSnMe_2X$:

$$(TsiSnMe_2)_2O + HX \rightarrow TsiSnMe_2X$$

 $(X = Cl, F, O_2CMe, NO_3, O_3SMe).$

More interesting results were obtained in a study of the bis-tin compound $(Me_3Si)_2C(SnMe_3)_2$ and its derivatives. This compound was, unexpectedly, the sole product from the reaction of $(Me_3Si)_2CCl_2$ with either a one or two molar proportion of Me_3SnLi in THF whatever the order of addition, and it is evident that the intermediate $(Me_3Si)_2(Me_3Sn)CCl$ is markedly more reactive than $(Me_3Si)_2CCl_2$ towards Me_3SnLi . We suggest that this observation is related to that by Prezzavento and Kuivila that Me_3SnCH_2Cl is ca. 1100 times as reactive as CH_2Cl_2 in the substitution reactions with Me_3SnLi in THF to give $(Me_3Sn)_2CH_2$ and Me_3SnCH_2Cl , respectively [11].

The compound $(Me_3Si)_2C(SnMe_3)_2$ was previously prepared by Seyferth and his colleagues by a more complex route [4]. The discovery of the simple preparation described above is of importance because the compound gives the reagent $(Me_3Si)_2(Me_3Sn)CLi$ on treatment with MeLi in THF:

$$(Me_3Si)_2C(SnMe_3)_2 + MeLi \rightarrow (Me_3Si)_2(Me_3Sn)CLi$$

The lithium reagent can be used to attach the ligand $(Me_3Si)_2(Me_3Sn)C$ to a range of metal centres, and this ligand is of special interest in being a close analogue of the trisyl ligand but containing reactive Sn-Me bonds as a potential source of functionality.

The identity and utility of the reagent $(Me_3Si)_2(Me_3Sn)CLi$ were confirmed by the following reactions:

$$(Me_{3}Si)_{2}(Me_{3}Sn)CLi + H_{2}O \rightarrow (Me_{3}Si)_{2}(Me_{3}Sn)CH$$

$$(Me_{3}Si)_{2}(Me_{3}Sn)CLi + Me_{3}SiCl \rightarrow (Me_{3}Si)_{3}(Me_{3}Sn)C$$

$$(Me_{3}Si)_{2}(Me_{3}Sn)CLi + Me_{2}SiCl_{2} \rightarrow (Me_{3}Si)_{2}(Me_{3}Sn)C(SiMe_{2}Cl)$$

$$(Me_{3}Si)_{2}(Me_{3}Sn)CLi + Me_{2}HSiCl \rightarrow (Me_{3}Si)_{2}(Me_{3}Sn)C(SiMe_{2}H)$$

The silicon hydride $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ reacted readily with a one molar proportion of bromine to give the bromide $(Me_3Si)_2(Me_3Sn)C(SiMe_2Br)$, and when additional bromine was used the subsequent cleavage of an Sn-Me bond gave $(Me_3Si)_2C(SnMe_2Br)(SiMe_2Br)$. The iodide $(Me_3Si)_2C(Me_3Sn)(SiMe_2I)$ was obtained, though not pure, from $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ and ICl. Treatment of $(Me_3Si)_2C(SnMe_2Br)(SiMe_2Br)$ with a one molar proportion of PhLi resulted in exclusive substitution at tin to give $(Me_3Si)_2C(SnMe_2Ph)(SiMe_2Br)$.

The bis-tin compound $(Me_3Si)_2C(SnMe_3)_2$ reacted with an excess of ICl or Br_2 to give the dihalide $(Me_3Si)_2C(SnMe_2X)_2$ (X = Cl or Br). When a one molar proportion of ICl or Br_2 was used the monohalides $(Me_3Si)_2C(SnMe_3)(SnMe_2X)$

(X = Cl or Br) were formed as the major products, along with some $(Me_3Si)_2C(SnMe_2X)_2$ and unchanged $(Me_3Si)_2C(SnMe_3)_2$.

Reaction of $(Me_3Si)_2C(SnMe_2Cl)_2$ with a two molar proportion of MeLi gave the expected product:

 $(Me_3Si)_2C(SnMe_2Cl)_2 + 2MeLi \rightarrow (Me_3Si)_2C(SnMe_3)_2$

The reactions of the compounds $(Me_3Si)_2C(SnMe_3)(SiMe_2I)$ with silver salts, which involve migration of an Me group from Sn to Si, will be described elsewhere. (For a preliminary report see ref. 12.)

NMR and Mass Spectra

The NMR and EI mass spectral data, given in the Experimental section, require little comment. Chemical shifts and coupling constants are as expected from available data for related species [13], with the ¹¹⁹Sn resonances for the compounds $TsiSnMe_2X$ and $(Me_2PhSi)_3CSnMe_2X$ (X = halogen) moving to higher field as the electronegativity of the halogen decreases. The ¹¹⁹Sn NMR spectrum of TsiSnMe₂NCS, like that of (cyclohexyl)₃SnNCS [14], shows a well-resolved triplet arising from 119 Sn $^{-14}$ N coupling. The mass spectra of the compounds TsiSnMe₂X $(X = Me, Cl, Br, I, SCN, CO_2Me, CO_2CF_3, SO_3Me, or NO_3)$ show that the initial fragmentation is by loss of Me or X; for $(Me_3Si)_2C(SnMe_3)(SiMe_2X)$ (X = H, F, Cl, Br, or Me) initial loss of Me is more common than loss of X. Thereafter, $SnMe_3X$ is eliminated, apparently to give the cation [Me₂SiC(SiMe₃)SiMe₂]⁺ (or an isomer), which is often the base peak. Elimination of $SiMe_4$ or $SiMe_3X$ seems to be less important. Likewise the compounds $(Me_2PhSi)_3CSnR_2X$ (R = Me or Ph, X = halogen) lose Me or Ph, and then HX or SnMe₃X. The prominent ions at m/z 325 $([Me_2Si=C(SiMe_2Ph)(SiMePh]^+), 309$ (by elimination of MeH from the ion at m/z325), 263 ($[Me_2Si=C(SiMe_2Ph)SiMe_2]^+$), and 135 ($[SiMe_2Ph]^+$) are characteristic of organometallic compounds containing the (Me₂PhSi)₃C group.

Experimental

General

Reactions involving simple chlorosilanes, lithium metal, organolithium reagents, or silver salts were carried out under dry nitrogen. All solvents were dried by standard methods.

Sealed capillary tubes were used for determination of melting points above $300 \,^{\circ}$ C.

Spectra

The ¹H NMR spectra were recorded on a Perkin–Elmer R32 spectrometer at 90 MHz with solutions in CH_2Cl_2 (except where otherwise stated) containing Me_4Si as internal standard. The ¹³C spectra (at 90.7 MHz, relative to external Me_4Si), and ¹¹⁹Sn spectra (at 134.1 MHz, relative to external Me_4Sn) were recorded with solutions in $CDCl_3/CH_2Cl_2$ unless otherwise stated, on a Bruker WM 360 spectrometer.

The IR spectra were determined with Nujol mulls between NaCl plates or as KBr discs.

Mass spectra were recorded at 70 eV, usually by electron impact, but where indicated by positive chemical ionization (CI) with NH₃ as ionizing gas; m/z values for chlorine-, bromine-, or tin-containing ions refer to the ³⁵Cl, ⁷⁹Br, and ¹²⁰Sn isotopes, and the reported abundances should be multiplied by 1.3, 2, and 3, respectively, to reflect the relevant total abundances.

Reagents

 $(Me_3Si)_3CLi$ was prepared as previously described [15]; a few drops of Me_3SiOMe were added to destroy any residual MeLi. $(Me_2PhSi)_3CLi$ was prepared from $(Me_2PhSi)_3CH$ as previously described [16], but the progress of the metallation was monitored by treatment of samples with Me_2HSiCl in the way Me_3SiCl was used to monitor formation of TsiLi [15].

Reactions of TsiLi with Organotin Halides

(a) A solution of TsiLi (50 mmol) in THF (30 cm³) was added with stirring during 0.5 h to a solution of Me₂SnCl₂ (12.0 g, 55 mmol) in a 1/3 THF/Et₂O mixture (50 cm³) at room temperature. The mixture was refluxed for 1 h and the solvent then removed. The residue was extracted with CH₂Cl₂, the extract was filtered and evaporated, and the residue recrystallized from MeOH to give (Me₃Si)₃C(SnMe₂Cl) (15.6 g, 75%), m.p. 337°C (lit. [6] 332°C (decomp.) (Found: C, 34.7; H, 8.0. C₁₂H₃₃ClSi₃Sn calc.: C, 34.7; H, 8.0%); δ (H) 0.39 (27H, s, SiMe₃) and 0.79 (6H, Me₂Sn; ²J(¹H-¹¹⁹Sn) 55 Hz); δ (C) (CDCl₃/CH₂Cl₂) + 4.8 (s, Me₃Si) and +5.4 (s, Me₂Sn); δ (Sn) (CDCl₃/CH₂Cl₂) + 133.8 ppm; *m/z* 401 (30%, [*M* - Me]⁺), 221 (10, [*M* - Me₄Sn - Me]⁺), 201 (100, [*M* - Me₃SnCl - Me]⁺), 165 (10, [Me₃Sn]⁺), 73 (95, [Me₃Si]⁺), 59 (25, [Me₂HSi]⁺), and 45 (20, [MeH₂Si]⁺); *m/z* (CI) 401 (40%), 381 (10, [*M* - Cl]⁺), 201 (100).

(b) A similar procedure starting with Ph_2SnCl_2 gave $(Me_3Si)_3CSnPh_2Cl$ (40%), m.p. 203°C (lit. [5], 155–156°C) (Found: C, 48.4; H, 6.5; $C_{22}H_{37}ClSi_3Sn: C$, 49.0, H, 6.9%); δ (H) 0.34 (27H, s, Me_3Si) and 7.85–8.00 (10H, m, Ph); δ (C) (CDCl₃/ CH₂Cl₂) 5.3 (s, ${}^{3}J({}^{13}C-{}^{119}Sn)$ 20.5 Hz, SiMe₃), 14.9 (s, quat. C, ${}^{1}J({}^{13}C-{}^{29}Si)$ 29.3 Hz, ${}^{1}J({}^{13}C-{}^{119}Sn)$ 103.3 Hz), 128.6 (s C(3) of Ph), ${}^{3}J({}^{13}C-{}^{119}Sn)$ 60.3 Hz), 129.3 (s, C(4) of Ph); ${}^{4}J({}^{13}C-{}^{119}Sn)$ 13.7 Hz), 135.9 (s, C(2) of Ph; ${}^{2}J({}^{13}C-{}^{119}Sn)$ 58.6 Hz), and 142.9 (s, C(1) of Ph, ${}^{1}J({}^{13}C-{}^{119}Sn)$ 535 Hz); δ (Sn) (CDCl₃/CH₂Cl₂) – 5.5 ppm (s); m/z 525 (15%), $[M - Me]^+$), 489 (35, $[M - HCl - Me]^+$), 325 (10), 309 (20), 289 (30), 263 (60, $[M - Me_2PhSnCl - Me]^+$), 247 (31), 216 (30), 201 (90, $[M - Me_2PhSnCl - Me]^+$), 197 (25), 175 (25), 135 (30), 70 (100), 59 (15), and 45 (10).

Reaction of (Me, PhSi)₃CLi with Me₂SnCl₂

A solution of $(Me_2PhSi)_3CLi (9.5 \text{ mmol})$ in THF (20 cm³) was added dropwise with stirring to a solution of Me_2SnCl_2 (2.7 g, 12.3 mmol) in 1/1 THF/Et₂O (40 cm³). The mixture was refluxed for 0.5 h, then work up as described in experiment (a) above gave $(Me_2PhSi)_3C(SnMe_2Cl)$ (4.5 g, 80%), m.p. 186°C (Found: C, 53.7; H, 6.6; $C_{27}H_{39}ClSi_3Sn$ calc.: 53.9; H, 6.5%); $\delta(H)$ 0.61 (18H, s, SiMe₂), and 0.74 (6H, ${}^{2}J({}^{1}(H-{}^{119}Sn) 54 \text{ Hz}, Me_2Sn)$, and 6.70–7.43 (15H, m, Ph); $\delta(C)$ 4.55 ${}^{3}J({}^{13}C-{}^{119}Sn) 51.7 \text{ Hz}, Me_2Si)$, 7.8 (Me₂Sn), 11.8 (s, quat. C), 127. 4 (s, C(3), of Ph), 128.8 (s, C(4) of Ph), 125.6 (s, C(2) of Ph), and 139.5 (s, C(1) of Ph); $\delta(Sn)$ 115.9 (s); 38

m/z 587 (10%, $[M - Me]^+$), 551 (40, $[M - HCl - Me]^+$), 402 (5), 340 (5), 325 (35, $[M - Me_3SnCl - Ph]^+$), 309 (55), 263 (20), 247 (20), 207 (50), 197 (30), 175 (30), 165 (22), 135 (100, $[Me_2PhSi]^+$), 73 (50), 59 (5), and 45 (15).

Reactions of TsiSnMe₂Cl and (Me₂PhSi)₃CSnMe₂Cl with MeLi

(a) A solution of MeLi (1.50 mmol) in Et_2O (1.5 cm³) was added to a stirred solution of TsiSnMe₂Cl (0.50 g, 1.20 mmol) in THF (5 cm³). The mixture was stirred for 0.5 h, the solvent evaporated off, and the residue extracted with CH₂Cl₂. The extract was filtered and then evaporated to leave TsiSnMe₃, m.p. 350 °C (lit. [3], 354–356 °C); δ (H) 0.19 (27H, s, Me₃Si) and 0.26 (9H, Me₃Sn, ²J(¹H–¹¹⁹Sn) 49.4 Hz); δ (C) – 2.2 (s, ¹J(¹³C–¹¹⁹Sn) 328, Me₃Sn); δ (Sn) 5.4 ppm; m/z 381 (40%, $[M - Me]^+$), 201 (100, $[M - Me_4Sn - Me]^+$), 165 (10), 73 (90), 59 (14), and 45 (10).

(b) A solution of MeLi (0.90 mmol) in Et₂O (1 cm³) was added dropwise from a syringe during 5 min to a solution of $(Me_2PhSi)_3C(SnMe_2Cl)$ (0.50 g, 0.83 mmol) in THF (5 cm³) at room temperature. The mixture was stirred for 1 h and the solvent then evaporated off. The residue was extracted with CH₂Cl₂ (20 cm³), the extract was filtered, and the solvent removed to give $(Me_2PhSi)_3C(SnMe_3)$ (0.44 g, 90%), m.p. 181°C (Found: C, 57.5; H, 7.4. $C_{28}H_{42}Si_3Sn$ calc.: C, 57.7; H, 7.2%); $\delta(H)$ 0.61 (18H, s, Me₂Si), 0.55 (9H, Me₃Sn, ²J(¹H-¹¹⁹Sn) 47.7 Hz), and 6.69-7.46 (15H, m, Ph); $\delta(C)$ 0.5 (¹J(¹³C-¹¹⁹Sn) 330 Hz, Me₃Sn), 4.7 (Me₂Si), 127.1 (C(3) of Ph) 128.3 (C(4) of Ph), 135.5 (C(2) of Ph), and 141.1 ppm (C(1) of Ph); $\delta(Sn)$ 3.7 ppm.

(c) A solution of MeLi (30 mmol) in Et_2O (3 cm³) was added dropwise to a stirred solution of $(Me_2PhSi)_3C(SnMe_2Cl)$ (0.50 g, 0.83 mmol) in THF (5 cm³) and the mixture was stirred at room temperature for 0.5 h. The excess of MeLi was destroyed by careful addition of a little MeOH in THF, and the solvent was then evaporated and the residue extracted with CH_2Cl_2 . The extract was filtered and the solvent evaporated to leave a solid, which was identified as $(Me_2PhSi)_3CH$ (0.30 g, 85%) by comparison of its ¹H NMR and mass spectra with those of an authentic sample.

Reaction of TsiSnMe₃ with ICl

A solution of ICl (1.32 mmol) in CCl_4 (13 cm³) was added dropwise during 0.5 h to a stirred solution of TsiSnMe₃ (0.50 g, 1.26 mmol) in 1/4 CH_2Cl_2/CCl_4 (20 cm³) at room temperature. The progress of the reaction was monitored by ¹H NMR spectroscopy, and when the organometallic starting material had been completely consumed the solvent was removed under reduced pressure and the pink residue kept under vacuum for 3 h. The white solid obtained (0.52 g, 98%) was identified as TsiSnMe₂Cl by comparison of its ¹H NMR, ¹¹⁹Sn NMR, and mass spectra with those of an authentic sample.

Reactions of TsiSnMe₂Cl with alkali metal salts

(a) A mixture of TsiSnMe₂Cl (0.50 g, 1.20 mmol), LiBr (0.50 g), and 1/1 THF/acetone (40 cm³) was heated under reflux for 1 h. The solvent was then removed under vacuum and the residue extracted with CH₂Cl₂. The extract was filtered and evaporated to leave TsiSnMe₂Br (0.52 g, 95%). m.p. 353°C (lit. [6] 318°C) (Found: C, 30.8; H, 6.9. $C_{12}H_{33}BrSi_3Sn$ calc.: C, 31.2; H, 7.1%); δ (H) 0.29 (27H, s, SiMe₃) and 0.88 (6H, ²J(¹H-¹¹⁹Sn) 53.5 Hz, Me₂Sn); δ (C) 4.9 (SiMe₃) and

5.9 ppm (Me₂Sn); δ (Sn) 100.1 ppm; m/z 445 (70%, $[M - Me]^+$), 381 (25, $[M - Br]^+$), 265 (10), 201 (100, $[M - Me_3SnBr - Me]^+$), 165 (20), 73 (50), 59 (20), and 45 (20).

(b) A similar procedure but with NaI (0.50 g) and with acetone alone as solvent, and with sublimation (160 °C at 1 mmHg) of the product gave TsiSnMe₂I (0.58 g, 95%), m.p. 354 °C (lit. [6], 332 °C (decomp)) (Found: C, 28.2; H, 6.6. $C_{12}H_{33}$ ISi₃Sn calc: C, 28.3; H, 6.5%); δ (H) 0.32 (27H, s, SiMe₃) and 1.02 (6H, ²J(¹H-¹¹⁹Sn) 50.4 Hz, Me₂Sn); δ (C) 5.0 (Me₃Si) and 6.25 ppm (Me₂Sn); δ (Sn) 7.8 ppm; m/z 493 (70%, $[M - Me]^+$), 381 (80, $[M - I]^+$), 313 (15), 277 (10), 201 (100), 185 (30), 165 (20), 73 (60), 59 (10), and 45 (10).

(c) The procedure described under (a) but starting from KSCN (0.50 g) and with acetone alone as solvent gave TsiSnMe₂NCS (0.50 g, 93%), m.p. 324°C (Found: C, 35.7; H, 7.6; N, 2.7. $C_{13}H_{33}NSSi_3Sn: C$, 35.5; H, 7.5; N, 3.2%); δ (H) 0.28 (27H, s, Me₃Si) and 0.72 (6H, $^2J(^1H-^{119}Sn)$ 54.5, Me₂Sn); δ (C) (CDCl₃) 4.5 (SiMe₃), 6.0 (SnMe₂), and 144 (SCN) ppm; δ (Sn) (CDCl₃) 62 ppm (t, $^1J(^{14}N-^{119}Sn)$ 117 Hz); ν (NCS) (KBr) 2020(st); m/z 424 (25%, $[M - Me]^+$), 381 (40, $[M - NCS]^+$), 244 (25), 201 (100), 185 (20), 165 (15), 73 (70), 59 (5), and 45 (5).

(d) The procedure described under (c) but with NaO₂CMe (0.50 g) gave TsiSnMe₂O₂CMe, m.p. 255 °C (decomp) (Found: C, 38.2; H, 8.2. $C_{14}H_{36}O_2Si_3Sn$ calcd.; C, 38.3; H 8.1%); δ (H) 0.24 (27H, s, Me₃Si), 0.73 (6H, s, $^2J(^{1}H - ^{119}Sn)$, 55.8 Hz, Me₂Sn), and 1.96 (3H, s, O₂CMe); δ (C) (CDCl₃) 4.5 (SnMe₂), 4.6 (SiMe₃), 49.5 (O₂CMe), and 175.0 ppm (CO); δ (Sn) (CDCl₃) 101.1 ppm; m/z 425 (55, $[M - Me]^+$), 381 (40, $[M - O_2CMe]^+$), 245 (45), 209 (85), 201 (100), 187 (25), 165 (35), 73 (60), 59 (5), and 45 (5).

Conversion of TsiSnMe₂Cl into (TsiSnMe₂)₂O

Aqueous NaOH (6.0 cm³ of 1*M* solution; 6.0 mmol) was added to a solution of TsiSnMe₂Cl (0.50 g, 1.20 mmol) in acetone (50 cm³) and the mixture was refluxed for 6 h. The solvent was then removed on a rotary evaporator and the residue extracted with CH₂Cl₂. The extract was filtered and evaporated, and the residue was recrystallized from MeOH to give (TsiSnMe₂)₂O (0.37 g, 80%) (Found: C, 36.9; H, 8.6. C₂₄H₆₆OSi₆Sn₂ calc.: C, 37.0; H, 8.5%); δ (H) 0.23 (54H, s, Me₃Si) and 0.49 (12H, ²J(¹H-¹¹⁹Sn) 52.2 Hz, Me₂Sn); *m/z* 397 (20%, [TsiSnMe₂O]⁺), 381 (30, [TsiSnMe₂]⁺, 216 (60), 201 (85), 165 (75), 73 (100), 59 (60), and 45 (45); *m/z* (CI) 397 (20%), 381 (100).

Reactions of TsiSnPh₂Cl and (Me₂PhSi)₃C(SnMe₂Cl) with alkali metal salts

(a) A mixture of $TsiSnPh_2Cl$ (0.50 g) and LiBr 10.5 g, excess) in 1/1 THF/ acetone (50 cm³) was heated under reflux for 1 h, the solvent removed under reduced pressure, and the residue extracted with CH_2Cl_2 . The extract was filtered and the solvent evaporated to leave $TsiSnPh_2Br$ (0.51 g, 95%), m.p. 208°C, $\delta(H)$ 0.36 (27H, s, Me₃Si) and 7.31–7.83 (10H, m, Ph); $\delta(C)$ 5.4 (Me₂Si), 128.0 (C(3) of Ph), 129.3 (C(4) of Ph), 126.2 (C(2) of Ph), and 142 ppm (C(1) of Ph); $\delta(Sn) - 16.8$ ppm.

(b) A similar procedure but starting with $(Me_2PhSi)_3C(SnMe_2Cl)$ gave $(Me_2PhSi)_3C(SnMe_2Br)$ (95%), m.p. 185°C (Found: C, 49.7; H, 6.3. $C_{27}H_{39}BrSi_3Sn$ calc.: C, 50.1; H, 6.0%); $\delta(H)$ 0.67 (18H, s, Me_2Si), 0.93 (6H, ${}^2J({}^{1}H-{}^{119}Sn)$ 53.2 Hz, Me_2Sn) and 6.78–7.46 (15 H, m, Ph); $\delta(C)$ 4.86 (Me_2Si), 8.70 (Me_2Sn), 127.6 (C(3))

40

of Ph), 129.0 (C(4)), 135.8 (C(2)), and 139.7 ppm (C(1)); δ (Sn) 84.3; m/z 631 (10% $[M - Me]^+$), 551 (50, $[M - HBr - Me]^+$), 402 (20, $[M - Me_3SnBr]^+$), 340 (5, $[M - Me_2PhSnBr]^+$), 325 (20, $[M - Me_2PhSnBr - Me]^+$), 197 (15), 175 (25), 165 (5), 135 (100), 73 (40), 59 (5) and 45 (5).

(c) A similar procedure to that described under (b) but starting with NaI gave $(Me_2PhSi)_3C(SnMe_2I)$, m.p. 189° C (Found: C, 46.7; H, 5.7. $C_{27}H_{39}ISi_3Sn$ calc.: C, 46.7; H, 5.6%); $\delta(H) 0.68 (18 \text{ H}, \text{ s}, Me_2Si)$, 1.16 (6H, Me_2Sn , $^2J(^1H-^{119}Sn)$ 49.5 Hz), and 6.46-7.21 (15H, m, Ph); $\delta(C) 4.7$ (Me_2Si); 9.2 (Me_2Sn), 127.4 (C(3) of Ph), 128.8 (C(4)), 135.6 (C(2)) and 139.6 ppm (C(1)); $\delta(Sn) - 5.1$ ppm; m/z 679 (1%, $[M - Me]^+$), 550 (25, $[M - HI - Me]^+$), 402 (10, $[M - Me_3SnI]^+$), 340 (5, $[M - Me_2PhSnI]^+$), 325 (30, $[M - Me_2PhSnI - Me]^+$), 309 (60), 263 (20), 197 (30), 175 (25), 165 (10), 135 (100), 73 (30), 59 (5), and 45 (5).

Reactions of TsiSnMe₂I with silver salts

(a) A mixture of TsiSiMe₂I (0.50 g, 0.98 mmol), AgNO₃ (0.20 g, 1.20 mmol), and CH₂Cl₂ (20 cm³) was stirred at room temperature for 3 h with protection from light then filtered through charcoal (previously washed with CH₂Cl₂). The filtrate was evaporated to leave TsiSnMe₂ONO₂ (0.40 g, 93%), m.p. 276°C (decomp.) (Found: C, 32.9; H, 7.6; N, 2.9. C₁₂H₃₃NO₃Si₃Sn calc.: C, 32.6; H, 7.4; N, 3.2%); δ (H) 0.29 (27H, s, SiMe₃) and 0.93 (6H, ²J(¹H-¹¹⁹Sn) 57.8 Hz, Me₂Sn); δ (C) 4.8 (Me₃Si) and 5.1 (Me₂Sn); δ (Sn) (CDCl₃) 160.5 ppm; ν (NO₃)(Nujol) 1540 cm⁻¹ (st); m/z 401 (10%, $[M - CNO]^+$), 382 (10, $[M - MeNO_2]^+$), 367 (20, $[M - MeNO_2 - Me]^+$), 267 (15), 201 (90, $[M - Me_3SnNO_3 - Me]^+$), 165 (30), 147 (40, $[Me_3SiOSiMe_2]^+$), 73 (100), and 59 (20).

(b) The procedure described under (a) but starting with AgCN (1.5 mmol) gave TsiSnMe₂CN (0.46 g, 95%), m.p. 313°C (Found: C, 38.5; H, 8.3; N, 3.4. $C_{13}H_{33}NSi_{3}Sn: C$, 38.3; H, 8.1; N, 3.4%); δ (H) 0.28 (27H, s, Me₃Si) and 0.67 (6H, ²J(¹H-¹¹⁹Sn) 54.0 Hz, Me₂Sn); δ (C) (CDCl₃) -0.81 (Me₂Sn), 4.62 (Me₃Si), and 128.0 ppm (CN); δ (Sn) (CDCl₃) -58 ppm; m/z 392 (35%, $[M - Me]^+$), 212 (20), 201 (100, $[M - Me_{3}SnCN - Me]^+$), 165 (20), 73 (98), 59 (25), and 45 (20).

(c) The same procedure but starting with AgO_2CMe (1.5 mmol) gave exclusively $TsiSnMe_2O_2CMe$, with properties identical with those described above.

(d) The same procedure but starting from AgO₂CCF₃ gave TsiSnMe₂O₂CCF₃ (0.56 g, 95%), m.p. 227 °C (decomp.); δ (H) 0.24 (27H, s, SiMe₃) and 0.84 (6H, s, ²J(¹H-¹¹⁹Sn) 53.1 Hz, Me₂Sn); δ (C) (CDCl₃) 4.5 (SiMe₃) and 6.5 ppm (Me₂Sn); δ (Sn) (CDCl₃) 156.6 p.p.m.; m/z 479 (25%, $[M - Me]^+$), 381 (5, $[M - O_2CCF_3]^+$), 205 (30), 201 (30, $[M - Me_3SnO_2CCF_3 - Me]^+$), 165 (15), 73 (100), 59 (20), 45 (15), and 28 (40, $[CO]^+$).

(e) The same procedure but starting from AgO₃SCF₃ (1.4 mmol) gave TsiSnMe₂O₃SCF₃ (0.62 g, 98%), m.p. 231°C (decomp.) (Found: C, 30, 1; H, 6.4. $C_{13}H_{27}F_3O_3SSi_3Sn$ calc.: C, 29.4; H, 6.2%); δ (H) 0.29 (27H, s, Me₃Si) and 1.02 (6H, ²J(¹H-¹¹⁹Sn) 52.2 Hz, Me₂Sn); δ (Sn) (CDCl₃) 232 ppm; ν (SO₃) (KBr) 1359 (st), 1195 (st); m/z 515 (10%, [M - Me]⁺), 445 (20), 401 (10), 381 (10, [$M - O_3SCF_3$]⁺), 335 (5), 205 (20), 201 (100, [$M - Me_3SnO_3SCF_3 - Me$]⁺), 165 (10), 73 (98), 59 (25) and 45 (25).

Reactions of (TsiSnMe₂)₂O with acids

(a) A solution of the oxide (0.50 g) in $MeCO_2H$ (5 cm³) was kept at 60 ° C for 15 min then evaporated under reduced pressure. The residue was kept under vacuum

for several hours then shown to be $TsiSnMe_2O_2CMe$ (0.56 g, 98%) with properties identical to those described earlier.

(b) Methanesulphonic acid (1 cm^3) was added to a solution of the oxide (0.50 g) in acetone (30 cm^3) , the mixture stirred for 30 min at room temperature, and the volatile material removed under reduced pressure. The residue was shaken with several portions of H₂O (total 30 cm³) then filtered off, washed with MeOH, dried under vacuum, and shown to be TsiSnMe₂O₃SMe (0.46 g, 75%), m.p. 257°C (decomp.) (Found: C, 32.7; H, 7.5. C₁₃H₃₆O₃SSi₃Sn calc.: C, 32.9; H, 7.6%); δ (H) 0.25 (27H, s, Me₃Si), 0.92 (6H, ²J(¹H-¹¹⁹Sn) 51.3 Hz, Me₂Sn), and 2.81 (3H, s, O₃SMe); δ (Sn) (CDCl₃) 173.3 ppm; m/z 461 (30, $[M - Me]^+$), 381 (10, $[M - SO_3 - Me]^+$), 281 (95, $[M - Me_4Sn - Me]^+$), 245 (40, $[Me_2SnO_3SMe]^+$), 201 (95, $[M - Me_3SnO_3SMe - Me]^+$), 165 (30), 73 (100), 59 (40), and 45 (40).

(c) A solution of the oxide (0.20 g) in acetone (20 cm³) was treated with a mixture (3 cm³) of concentrated hydrochloric acid and an equal volume of water. The mixture was stirred at 60 °C for 15 min, then shaken with a mixture of CH_2Cl_2 (30 cm³) and H_2O (30 cm³). The organic layer was separated, washed, and evaporated, to give TsiSnMe₂Cl (0.20 g, 95%) with properties identical to those described earlier.

(d) A solution of the oxide (2.0 g) in acetone (50 cm³) was stirred for 1 h with 35% aqueous HF (2 cm³) in a polythene vessel then solid Na_2CO_3 was added in small portions to remove the HF. The solvent was removed under vacuum and the residue extracted with CH_2Cl_2 . The extract was filtered and evaporated to leave TsiSnMe₂F (1.95 g, 94%) with properties identical to those of an authentic sample [12].

(e) A solution of the oxide (0.50 g) in acetone (30 cm³) was stirred for 15 min with a 1/1 mixture (2 cm³) of water and concentrated nitric acid. Work-up as in (c) above gave TsiSnMe₂ONO₂ (0.54 g, 93%) with properties identical to those of an authentic sample.

Preparation of $(Me_3Si)_2C(SnMe_3)_2$

A solution of $(Me_3Si)_2CCl_2$ (12.0 g, 52.4 mmol) in THF (15 cm³) was added dropwise during 30 min to a stirred solution of Me_3SnLi [17] (110 mmol) in THF at 0°C. The mixture was stirred for 1 h and the solvent then removed under reduced pressure. The residue was extracted with CH₂Cl and the extract was filtered then evaporated. The residue was recrystallized from MeOH to give $(Me_3Si)_2C(SnMe_3)_2$ (14.9 g, 76%), m.p. 372°C (lit. [4], > 360°C) (Found: C, 32.4; H, 7.0. $C_{13}H_{36}Si_2Sn_2$ calc.: C, 32.0; H, 7.4%); $\delta(H) 0.08$ (18H, s, Me_3Si) and 0.17 (18H, ${}^2J({}^{1}H-{}^{119}Sn)$ 50.8 Hz, Me_3Sn); $\delta(C) - 2.9$ ($Me_3Sn, {}^{1}J({}^{13}C-{}^{119}Sn)$ 325 Hz) and 5.0 ppm (Me_3Si); $\delta(Si)$ 0.96 ppm (${}^{2}J({}^{29}Si-{}^{119}Sn)$ 33.2 Hz); $\delta(Sn)$ (CDCl₃) 16.2 (${}^{1}J({}^{13}C-{}^{119}Sn)$ 325 Hz, ${}^{2}J({}^{117}Sn-{}^{119}Sn)$ 351 Hz, ${}^{2}J({}^{29}Si-{}^{119}Sn)$ 33.5 Hz, ${}^{3}J({}^{13}C-{}^{119}Sn)$ 16.3 Hz); m/z 473 (15%, $[M-Me]^+$), 323 (5), 263 (5), 193 (15), 165 (15), 135 (15), 73 (100), 59 (15), and 45 (15).

The same product was formed (and no $(Me_3Si)_2C(SnMe_3)Cl$ was detected) when the reagents were used in 1/1 molar ratio and the order of addition reversed.

Reactions of $(Me_3Si)_2C(SnMe_3)_2$ with halogens

(a) A solution of 0.1 *M* ICl in CCl₄ (25 cm³, 2.5 mmol) was added dropwise with stirring to a solution of $(Me_3Si)_2C(SnMe_3)_2$ (0.50 g, 1.02 mmol) in CCl₄ (20 cm³).

42

The progress of the reaction was monitored by ¹H NMR spectroscopy, and when the starting material had been completely consumed the solvent was removed rapidly under reduced pressure. The residue was kept under vacuum for 3 h until the pink colour had disappeared, and then shown to be $(Me_3Si)_2C(SnMe_2Cl)_2$ (0.53 g, 98%), m.p. 315 °C (lit. [4] 303.5-305 °C); $\delta(H)$ 0.28 (18H, s, Me_3Si) and 0.82 (12H, Me_2Sn), ²J(¹H-¹¹⁹Sn) 56.7 Hz); $\delta(Sn)$ 138 ppm.

(b) The procedure described in (a) but starting from Br_2 gave $(Me_3Si)_2C(SnMe_2Br)_2$ (98%), m.p. 324°C (Found: C, 21.1; H, 4.7. $C_{11}H_{30}Br_2Si_2Sn_2$ calc.: C, 21.4; H, 4.6%); δ (H) 0.30 (18H, s, Me_3Si) and 0.99 (12 H, ${}^2J({}^1H-{}^{119}Sn)$ 47.7 Hz, Me_2Sn); δ (C) 4.77 ${}^3J({}^1H-{}^{119}Sn)$ 19.5 Hz, Me_3Si) and 5.67 (${}^1J({}^{13}C-{}^{119}Sn)$ 372.6 Hz, Me_2Sn); δ (Sn) 106; m/z 601 (45, $[M - Me]^+$), 535 (10, $[M - Br]^+$), 308 (10, $[M - Me_2SnBr_2]^+$), 257 (25), 201 (40), 193 (70), 165 (10), 135 (20), 73 (100), 59 (50), and 45 (26).

(c) When a solution containing I_2 (30 mmol) and $(Me_3Si)_2C(SnMe_3)_2$ (1.02 mmol) in CCl₄ (50 cm³) was stirred at room temperature for 3 h there was no change in the ¹H NMR spectrum.

Reactions of $(Me_3Si)_2C(SnMe_2Cl)_2$ with MeLi

A solution of MeLi (2.0 mmol) in Et_2O (4 cm³) was added dropwise during 5 min to a solution of $(Me_2Si)_2C(SnMe_2Cl)_2$ (0.50 g, 0.95 mmol) in Et_2O (10 cm³) at room temperature. The mixture was stirred for 30 min and then a few drops of Me_3SiOMe were added to remove any residual MeLi. The solvent was removed and the residue extracted with CH_2Cl_2 . The extract was filtered, then evaporated to give $(Me_3Si)_2C(SnMe_3)_2$ (0.44 g, 95%), with properties identical to those of an authentic sample.

Generation and reactions of (Me₃Si)₂(SnMe₃)CLi

A solution of MeLi (5 mmol) in Et₂O (10 cm³) was added dropwise with stirring to a solution of $(Me_3Si)_2C(SnMe_3)_2$ (2.0 g, 4.1 mmol) in THF (25 cm³) at room temperature. The solution rapidly turned yellow. The Et₂O was distilled off, the mixture kept under gentle reflux, and the extent of metallation determined from time to time by removing a small sample (0.3 cm³), adding an excess of Me₃SiCl (1.5 cm³) to it, then determining the relative proportions of starting material and TsiSnMe₃ by ¹H NMR spectroscopy. The metallation was 90–95% complete within 1 h, and the volatile material was removed under vacuum (mainly to remove Me₄Sn) and fresh THF (20 cm³), then added, followed by a few drops of Me₃SiOMe to destroy any residual MeLi. Solutions thus made were used for the reactions described below. The solution gave a ⁶Li signal at δ -0.07 (broad), a ⁷Li signal at +0.27 (relative to external aqueous LiNO₃), and a ¹¹⁹Sn signal at +1.7 ppm.

(b) A solution of $(Me_3Si)_2(Me_3Sn)CLi$ made from $(Me_3Si)_2C(SnMe_3)_2$ (4.1 mmol) in THF (20 cm³) as described in (a) was added dropwise with stirring during 20 min to a solution of Me_3SiCl (0.54 g, 5.0 mmol) in Et₂O (30 cm³). The mixture was subsequently stirred for 30 min and the solvent then removed under reduced pressure. The residue was extracted with CH_2Cl_2 , and the extract filtered then evaporated. The residue was recrystallized from MeOH to give TsiSnMe₃ (1.5 g, 84%), m.p. 352°C (lit. [4], 354–356°C). Its NMR (¹H, ¹³C, and ¹¹⁹Sn) and mass spectra were identical with those described earlier.

(c) A solution in THF (20 cm³) of $(Me_3Si)_2(Me_3Sn)CLi$ made from $(Me_3Si)_2C(SnMe_3)_2$ (2.0 mmol) was treated dropwise with stirring with H_2O (0.5 cm³). The solvent was removed under pressure and the oily residue was extracted with CH_2Cl_2 . The extract was filtered and the solvent removed to give an oil which was judged to be $(Me_3Si)_2(Me_3Sn)CH$ (0.63 g, 95%); $\delta(H) - 0.65$ (1H, s, CH), 0.06 (18H, s, Me_3Si), and 0.16 (9H, $^2J(^1H^{-119}Sn)$ 51.3 Hz, Me_3Sn); $\delta(Sn)$ (CDCl₃) 5.0 ppm; m/z 309 (10%, $[M - Me]^+$), 165 (15, $[Me_3Sn]^+$), 135 (10), 129 (90, $[M - Me_4Sn-Me]^+$), 73 (100), 59 (45), and 45 (35).

(d) The procedure described in (b), but with Me_2SiCl_2 in place of Me_3SiCl , gave $(Me_3Si)_2(Me_3Sn)C(SiMe_2Cl)$ (75%), m.p. 346°C (Found: C, 34.5; H, 8.0. $C_{12}H_{33}ClSi_3Sn$ calc.: C, 34.6; H, 7.9%); $\delta(H)$ 0.26 (18H, s, Me_3Si), 0.37 (9H, $^2J(^1H-^{119}Sn)$ 50.7 Hz, Me_3Sn) and 0.57 (6H, s, Me_2Si); $\delta(C)$ (CDCl₃) – 2.02 (Me₃Sn), 4.90 (Me₃Si), and 8.7 ppm (Me₂Si); $\delta(Sn)$ 6.0 ppm; m/z 401 (20, $[M - Me]^+$), 201 (100), 165 (5), 73 (50) and 45 (5).

(e) The procedure described under (b), but with Me₂HSiCl in place of Me₃SiCl, gave $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ (1.1 g, 60%), m.p. 321° C (Found: C, 38.0; H, 8.9. C₁₂H₃₄Si₃Sn calc.: C, 37.8; H, 8.9%); δ (H) 0.16 (18H, s, Me₃Si), 0.17 (6H, d, ${}^{3}J({}^{1}H-{}^{1}H)$ 4 Hz, Me₂Si), and 0.25 (9H, s, Me₃Sn); δ (C) (CDCl₃) - 3.61 (${}^{1}J({}^{13}C-{}^{119}Sn)$ 331.3, Me₃Sn), 1.32 (Me₂Si), and 4.0 ppm (s, Me₃Si); δ (Sn) (CDCl₃) 9.3; m/z 367 (35 [M - Me]⁺), 201 (100), 73 (50), 59 (15), and 45 (10).

Reactions of $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ with Br_2 and ICl

(a) An 0.10 *M* solution of Br₂ in CCl₄ (26 cm³, 2.6 mmol) was added dropwise with stirring at room temperature to a solution of $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ (0.50 g, 1.30 mmol) in CH₂Cl₂ (30 cm³). The bromine colour disappeared immediately on each addition until all the bromine solution had been added, when a faint colour persisted. The solution was stirred for 1 h to allow HBr to escape, then the solvent was evaporated off under reduced pressure. The residual solid was kept under high vacuum for several hours then shown to be $(Me_3Si)_2C(SnMe_2Br)(SiMe_2Br)$ (0.69 g, 100%), m.p. 353°C (Found: C, 25.0; H, 5.8. C₁₁H₃₀Br₂Si₃Sn calc.: C, 25.1; H, 5.7%); δ (H) (CH₂Sl₂) 0.42 (18H, s, Me₃Si), 0.89 (6H, s, Me₂Si), and 1.05 (6H, ²J(¹H-¹¹⁹Sn) 47.8 Hz, Me₂Sn); δ (C) 4.5 (Me₃Si), 6.6 (Me₂Si), and 9.2 (²J(¹³C-¹¹⁹Sn) 20 Hz, Me₂BrSn); δ (Sn) 79.2 ppm; m/z 509 (20%, $[M - Me]^+$), 265 (30, $[M-Me_3SnBr - Me]^+$), 216 (15, $[M - Me_2SnBr_2]^+$), 201 (100, $[M - Me_2SnBr_2 - Me]^+$), 185 (15), and 73 (55).

(b) An 0.10 *M* solution of Br_2 in CH_2Cl_2 (5.2 cm³, 0.52 mmol) was added dropwise with stirring at room temperature to a solution of $(Me_3Si)_2(Me_3Sn)C(Si-Me_2H)$ (0.20 g, 0.52 mmol). The progress of the reaction was monitored during the addition by ¹H NMR spectroscopy, and this showed that starting material had been completely consumed when the addition was complete. The mixture was stirred for 1 h, the solvent then removed under reduced pressure, and the residue kept under high vacuum for some hours then shown to be $(Me_3Si)_2(Me_3Sn)C(SiMe_2Br)$ (0.23 3g, 95%), m.p. 356 °C (Found: C, 31.0; H, 7.5. $C_{12}H_{33}BrSi_3Sn$ calcd.: C, 31.2; H, 7.2%); $\delta(H)$ 0.35 (18H, s, Me_3Si), 0.43 (9H, ²J(¹H-¹¹⁹Sn) 53.5 Hz, Me_3Sn), and 0.81 (6H, s, Me_2Si); $\delta(C) - 2.08$ (Me_3Sn), 4.67 (Me_3Si), and 9.57 (Me_2Si); $\delta(Sn)$ 7.4 ppm; m/z 445 (10%, $[M - Me]^+$), 201 (100), 185 (60), 165 (30), and 45 (25).

(c) An 0.10 *M* solution of ICl in CCl_4 (5.2 cm³, 0.52 mmol, was added dropwise during 45 min to a solution $(Me_3Si)_2(Me_3Sn)C(SiMe_2H)$ (0.20 g, 0.52 mmol) at

room temperature, and the progress of the reaction was monitored by ¹H NMR spectroscopy. When the addition was complete all the starting material had been consumed. The solution was stirred for 1 h then evaporated under reduced pressure, and the residue was recrystallized from pentane to give $(Me_3Si)_2(Me_3Sn)C(SiMe_2I)$ (0.17 g, 60%), m.p. 183°C (decomp.) (Found: C, 29.0; H, 6.5. C₁₂H₃₃ISi₃Sn calcd.: C, 28.3; H, 6.1%); $\delta(H)$ 0.28 (18H, s, Me₃Si), 0.37 (9H, ²J(¹H-¹¹⁹Sn) 51.2 Hz, Me₃Sn), and 0.98 (6H, s, Me₂Si); m/z 493 (15%, $[M - Me]^+$), 381 (40, $[M - I]^+$), 365 (5), 216 (5), 201 (100), 185 (10), 165 (10), 73 (90), 59 (15), and 45 (10).

Reaction of (Me₃Si)₂C(SnMe₂Br)(SiMe₂Br) with PhLi

A solution of PhLi (2.00 mmol) in Et₂O (2.5 cm³) was added dropwise to a stirred solution of $(Me_3Si)_2C(SnMe_2Br)(SiMe_2Br)$ (0.50 g, 0.95 mmol) in THF (15 cm³) at room temperature. The stirring was continued for 30 min, and a little MeOH in THF added cautiously to destroy any residual PhLi. The solvent was removed under reduced pressure and the residue extracted with CH₂Cl₂. The extract was filtered and the solvent removed to leave $(Me_3Si)_2C(SnMe_2Ph)(SiMe_2Br)$ (0.49 g, 95%), m.p. 286 °C (Found: C, 38.9; H, 6.8. C₁₇H₃₅BrSi₃Sn calc.: C, 39.0; H, 6.7%); δ (H) 0.27 (18H, s, Me₃Si), 0.65 (6H, ²J(¹H-¹¹⁹Sn) 47.7 Hz, Me₂Sn), 0.73 (6H, s, Me₂Si), and 7.24-7.80 (5H, m, Ph); δ (C) – 2.3 (Me₂Sn), 4.9 (Me₃Si), 9.5 (Me₂Si); 127.0 (C(3) of Ph), 128.2 (C(4)), 136.8 (C(2)), and 143.1 (C(1)), 143.1 (C(1)); δ (Sn) – 30.9 ppm; m/z 507 (15% $[M - Me]^+$), 427 (15, $[M - Ph]^+$), 263 (20), 216 (50), 201 (95), 216 (50), 201 (95), 135 (20), and 73 (100); m/z (+CI) 507 (60%), 443 (35, $[M-Ph]^+$), 427 (25), 263 (30), 216 (65), 201 (100), and 73 (45).

Acknowledgements

We thank the S.E.R.C. for support, the Iraqi Ministry of Higher Education for the award of a research scholarship to S.M.D., Dr. A.G. Avent and Mr. B.D. Meadows for help with NMR spectroscopy, and Mr. A. Greenway and Mr. A.D. Adams for the mass spectra.

References

- C. Eaborn, J. Organomet. Chem., 239 (1982) 93, and in H. Sakurai (Ed.), Organosilicon and Bioorganosilicon Chemistry, Ellis Horwood, Chichester, 1985, p. 123-130.
- 2 J.D. Smith, Pure Appl. Chem., 58 (1986) 623.
- 3 M.A. Cook, C. Eaborn, A.E. Jukes, and D.R.M. Walton, J. Organomet. Chem., 24 (1970) 529.
- 4 D. Seyferth and J.L. Lefferts, J. Organomet. Chem., 116 (1976) 257.
- 5 I.V. Borisova, N.N. Zemlyanskii, N.D. Kolosova, Ya. A. Ustynyuk, and I.P. Beletskaya, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 2397.
- 6 F. Glockling, P. Harriott, and W.-K. Ng, J. Chem. Res., (1979) (S) 12; (M) 275.
- 7 F. Glockling and W.-K. Ng, J. Chem. Res., (1980) (S) 230; (M) 3128.
- 8 F. Glockling and W.-K. Ng, J. Chem. Soc., Dalton Trans., (1981) 1101.
- 9 C. Eaborn, R. Eidenschink, P.M. Jackson, and D.R.M. Walton, J. Organomet. Chem., 101 (1975) C40.
- 10 S.S. Al-Juaid, S.M. Dhaher, C. Eaborn, P.B. Hitchcock, and J.D. Smith, J. Organomet. Chem., 325 (1987) 117.
- 11 B.A. Prezzavento and H.G. Kuivila, J. Org. Chem., 52 (1987) 929.
- 12 S.M. Dhaher, C. Eaborn, and J.D. Smith, J. Chem. Soc., Chem. Commun., (1987) 1183.
- 13 B. Wrackmeyer, Ann. Rep. NMR Spectroscopy, 16 (1985) 73.
- 14 K.C. Molloy, K. Quill, S.J. Blunden, and R. Hill, J. Chem. Soc., Dalton Trans., (1986) 875.
- 15 Z.H. Alube and C. Eaborn, J. Organomet. Chem., 269 (1984) 217.
- 16 C. Eaborn and A.I. Mansour, J. Chem. Soc., Perkin Trans. II, (1985) 729.
- 17 C. Tamborski, F.E. Ford, and E.J. Soloski, J. Org. Chem., 28 (1963) 237.